ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Лёша задумал двузначное число (от 10 до 99). Гриша пытается его отгадать, называя двузначные числа. Считается, что он отгадал, если одну цифру он назвал правильно, а в другой ошибся не более чем на единицу (например, если задумано число 65, то 65, 64 и 75 подходят, а 63, 76 и 56 – нет). Придумайте способ, гарантирующий Грише успех за 22 попытки (какое бы число ни задумал Лёша).

Вниз   Решение


На бесцветной плоскости покрасили три произвольные точки: одну – в красный цвет, другую – в синий, третью –` в жёлтый. Каждым ходом выбирают на плоскости любые две точки двух из этих цветов и окрашивают еще одну точку в оставшийся цвет так, чтобы эти три точки образовали равносторонний треугольник, в котором цвета вершин идут в порядке "красный, синий, жёлтый" (по часовой стрелке). При этом разрешается красить и уже окрашенную точку плоскости (считаем, что точка может иметь одновременно несколько цветов). Докажите, что сколько бы ходов ни было сделано, все точки одного цвета будут лежать на одной прямой.

Вверх   Решение

Задача 60307
Темы:    [ Алгебраические неравенства (прочее) ]
[ Произведения и факториалы ]
Сложность: 3
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Докажите неравенство для натуральных n:  


Решение

Замечания

Ср. с задачей 73558.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 1
Название Метод математической индукции
Тема Индукция
параграф
Номер 2
Название Тождества, неравенства и делимость
Тема Индукция (прочее)
задача
Номер 01.034

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .