ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Доказать, что в вершинах многогранника можно расставить натуральные числа
так, что в каждых двух вершинах, соединённых ребром, стоят числа не взаимно простые, а в каждых двух вершинах, не соединённых ребром, взаимно простые.
|
Задача 30780
УсловиеДокажите, что не существует графа без петель и кратных рёбер с пятью вершинами, степени которых равны 4, 4, 4, 4, 2. РешениеПусть степень каждой из четырёх вершин равна 4. Это значит, что каждая из них соединена со всеми остальными вершинами (в том числе и с пятой). Значит, степень пятой вершины также равна 4. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке