ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть A1...An — правильный n-угольник, X — произвольная точка. Рассмотрим проекции X1, ..., Xn точки X на прямые A1A2, ..., AnA1. Пусть xi — длина отрезка AiXi с учётом знака (знак плюс берётся в случае, когда лучи AiXi и AiAi + 1 сонаправлены). Докажите, что сумма x1 + ... + xn равна половине периметра многоугольника A1...An.

   Решение

Задача 53131
Темы:    [ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

В угол вписаны две окружности; у них есть общая внутренняя касательная T1T2 (T1 и T2 — точки касания), которая пересекает стороны угла в точках A1 и A2. Докажите, что A1T1 = A2T2 (или, что эквивалентно, A1T2 = A2T1).

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 800

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .