|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Числа 1, 2, 3, ..., n записываются в некотором порядке: a1, a2, a3, ..., an. Берётся сумма S = a1/1 + a2/2 + ... + an/n. Найдите такое n, чтобы среди таких сумм (при всевозможных перестановках a1, a2, a3, ..., an) встретились все целые числа от n до n + 100. |
Задача 86933
УсловиеДокажите, что медианы тетраэдра (отрезки, соединяющие вершины с точками пересечения медиан противолежащих граней) пересекаются в одной точке и делятся ею в отношении 3:1 , считая от вершины.РешениеДокажем, что любые две медианы тетраэдра пересекаются и делятся точкой пересечения в отношении 3:1 , считая от вершины. Отсюда будет следовать, что через точку, делящую одну и медиан тетраэдра в отношении 3:1 , считая от вершины, проходят остальные три медианы. Пусть M и N – точки пересечения медиан граней ABC и ABD тетраэдра ABCD , K – середина AB . Плоскость, проходящая через точки D , K и C , содержит точки M и N , причём стороны CK и DK треугольника DKC делятся этими точками в одном и том же отношении:Из подобия треугольников KCD и KMN следует, что Пусть отрезки DM и CN пересекаются в точке O . Из подобия треугольников DOC и MON следует, что что и требовалось доказать. Источники и прецеденты использования
|
|||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|