ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

В строчку выписано 10 целых чисел. Вторая строчка находится так: под каждым числом A первой строчки пишется число, равное количеству чисел первой строчки, которые больше A и при этом стоят правее A. По второй строчке аналогично строится третья строчка и т. д.
  а) Докажите, что все строчки, начиная с некоторой – нулевые (состоят из сплошных нулей).
  б) Каково максимально возможное число ненулевых строчек (содержащих хотя бы одно число, отличное от нуля)?

   Решение

Задача 53313
Тема:    [ Равные треугольники. Признаки равенства ]
Сложность: 2+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Треугольники ACC1 и BCC1 равны. Их вершины A и B лежат по разные стороны от прямой CC1.
Докажите, что треугольники ABC и ABC1 – равнобедренные.


Решение

Из равенства треугольников ACC1 и BCC1 следует равенство соответствующих сторон:  AC = BC  и  AC1 = BC1.  Следовательно, треугольники ABC и ABC1 – равнобедренные.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1009

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .