ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Из точки A, лежащей вне окружности, выходят лучи AB и AC, пересекающие эту окружность. Докажите, что величина угла BAC равна полуразности угловых величин дуг окружности, заключенных внутри этого угла. б) Вершина угла BAC расположена внутри окружности. Докажите, что величина угла BAC равна полусумме угловых величин дуг окружности, заключенных внутри угла BAC и внутри угла, симметричного ему относительно вершины A. Докажите, что если в остроугольном
треугольнике
ha = lb = mc, то этот треугольник равносторонний.
|
Задача 98598
УсловиеНекоторый куб рассекли плоскостью так, что в сечении получился пятиугольник. Решение Стороны пятиугольника лежат в пяти гранях куба. Среди этих пяти граней есть две пары параллельных. Поэтому параллельны и соответствующие стороны пятиугольника. Это значит, что пятиугольник получается из некоторого параллелограмма ABCD срезанием одного из его углов (например, отрезанием треугольника DEF). Замечания6 баллов Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке