ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Коттеджный посёлок имеет размеры 𝑛 × 𝑚 одинаковых квадратных участков. Собственники по очереди начали огораживать свои участки забором. Стоимость части забора между любыми двумя соседними участками составила 10 тысяч рублей и её полностью нёс тот сосед, который огораживал свой участок первым (расходы не делились между соседями, то есть некоторые могли вообще ничего не потратить). В итоге все участки оказались огорожены забором с четырёх сторон. Могло ли оказаться, что в итоге поровну жителей потратило на забор по 0, 10, 30 и 40 тысяч рублей, а остальные — по 20 тысяч?

   Решение

Задача 57497
Тема:    [ Неравенства для элементов треугольника (прочее) ]
Сложность: 2+
Классы: 9
В корзину
Прислать комментарий

Условие

Через точку O пересечения медиан треугольника ABC проведена прямая, пересекающая его стороны в точках M и N. Докажите, что  NO $ \leq$ 2MO.

Решение

Пусть точки M и N лежат на сторонах AB и AC соответственно. Проведем через вершину C прямую, параллельную стороне AB. Пусть N1 — точка пересечения этой прямой и прямой MN. Тогда N1O : MO = 2, но  NO $ \leq$ N1O, поэтому  NO : MO $ \leq$ 2.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 10
Название Неравенства для элементов треугольника
Тема Неравенства для элементов треугольника.
параграф
Номер 13
Название Неравенства в треугольниках
Тема Неравенства для элементов треугольника (прочее)
задача
Номер 10.085

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .