|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Учащиеся 57-й школы решили провести чемпионат по мини-футболу. Так как ворота на школьном дворе разного размера, то игроки хотят составить расписание игр так, чтобы: |
Задача 58185
УсловиеДан квадратный лист клетчатой бумаги размером 100×100 клеток. Проведено несколько несамопересекающихся ломаных, идущих по сторонам клеток и не имеющих общих точек. Эти ломаные идут строго внутри квадрата, а концами обязательно выходят на границу. Докажите, что кроме вершин квадрата найдется еще узел (внутри квадрата или на границе), не принадлежащий ни одной ломаной.РешениеРаскрасим узлы клетчатой бумаги в шахматном порядке (рис.). Так как концы любого единичного отрезка разноцветны, то ломаная с одноцветными концами содержит нечетное число узлов, а с разноцветными — четное. Предположим, что из всех узлов границы (кроме вершин квадрата) выходят ломаные. Докажем, что тогда все ломаные вместе содержат четное число узлов. Для этого достаточно доказать, что число ломаных с одноцветными концами четно. Пусть на границе квадрата расположено 4m белых и 4n черных узлов (вершины квадрата не учитываются). Обозначим число ломаных, у которых оба конца белые, через k. Тогда имеется 4m - 2k ломаных с разноцветными концами и [4n - (4m - 2k)]/2 = 2(n - m) + k ломаных с черными концами. Поэтому ломаных с одноцветными концами будет k + 2(n - m) + k = 2(n - m + k) — четное число. Остается заметить, что квадратный лист бумаги размером 100×100 клеток содержит нечетное число узлов. Поэтому ломаные, содержащие четное число узлов, не могут проходить через все узлы.Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|