|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Внутри выпуклого 100-угольника выбрана точка X, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка X будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася. |
Задача 56973
УсловиеПусть P и Q — первая и вторая точки Брокара треугольника ABC. Прямые CP и BQ, AP и CQ, BP и AQ пересекаются в точках A1, B1 и C1. Докажите, что описанная окружность треугольника A1B1C1 проходит через точки P и Q.РешениеТреугольник ABC1 равнобедренный, причем угол при его основании AB равен углу БрокараИсточники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|