|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что для любого натурального n выполнено неравенство (n – 1)n+1(n + 1)n–1 < n2n. |
Задача 56766
УсловиеДиагонали четырехугольника ABCD пересекаются в точке P, причем SABP2 + SCDP2 = SBCP2 + SADP2. Докажите, что P — середина одной из диагоналей.РешениеПосле сокращения на sin2Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|