|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи а) Имеется 51 двузначное число. Докажите, что из этих чисел можно выбрать по крайней мере 6 чисел так, чтобы никакие два из выбранных чисел ни в одном разряде не имели одинаковой цифры. б) Даны натуральные числа k и n, причём 1 < k < n. Для какого наименьшего m верно следующее утверждение: при любой расстановке m ладей на доске размером n×n клеток можно выбрать k ладей из этих m так, чтобы никакие две из этих выбранных ладей не били друг друга? |
Задача 30784
УсловиеДокажите, что граф, в котором каждые две вершины соединены ровно одним простым путем, является деревом. РешениеОчевидно, что данный граф связен. Предположим теперь, что в нем есть цикл. Тогда любые две вершины этого цикла соединены по крайней мере двумя простыми путями. Противоречие. Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|