ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Город представляет собой бесконечную клетчатую плоскость (линии – улицы, клеточки – кварталы). На одной улице через каждые 100 кварталов на перекрестках стоит по милиционеру. Где-то в городе есть бандит (местонахождение его неизвестно, но перемещается он только по улицам). Цель милиции – увидеть бандита. Есть ли у милиции способ (алгоритм) наверняка достигнуть своей цели? (Максимальные скорости милиции и бандита какие-то конечные, но не известные нам величины, милиция видит вдоль улиц во все стороны на бесконечное расстояние.) Докажите, что при параллельном переносе окружность переходит в окружность.
|
Задача 98317
УсловиеМожно ли нарисовать на плоскости четыре красных и четыре чёрных точки так, чтобы для каждой тройки точек одного цвета нашлась такая точка другого цвета, что эти четыре точки являются вершинами параллелограмма? РешениеПример см. на рисунке. Другой пример можно получить, спроектировав на плоскость пример задачи 98327 так, что никакие две вершины куба не проецируются в одну точку. ОтветМожно. Замечания1. 3 балла. 2. См. также задачей М1576 из Задачника "Кванта". Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке