Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Автор: Анджанс А.

Город представляет собой бесконечную клетчатую плоскость (линии – улицы, клеточки – кварталы). На одной улице через каждые 100 кварталов на перекрестках стоит по милиционеру. Где-то в городе есть бандит (местонахождение его неизвестно, но перемещается он только по улицам). Цель милиции – увидеть бандита. Есть ли у милиции способ (алгоритм) наверняка достигнуть своей цели? (Максимальные скорости милиции и бандита какие-то конечные, но не известные нам величины, милиция видит вдоль улиц во все стороны на бесконечное расстояние.)

Вниз   Решение


Докажите, что при параллельном переносе окружность переходит в окружность.

Вверх   Решение

Задача 98317
Темы:    [ Выход в пространство ]
[ Системы точек ]
[ Раскраски ]
[ Проектирование помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Можно ли нарисовать на плоскости четыре красных и четыре чёрных точки так, чтобы для каждой тройки точек одного цвета нашлась такая точка другого цвета, что эти четыре точки являются вершинами параллелограмма?


Решение

Пример см. на рисунке.

Другой пример можно получить, спроектировав на плоскость пример задачи 98327 так, что никакие две вершины куба не проецируются в одну точку.


Ответ

Можно.

Замечания

1. 3 балла.

2. См. также задачей М1576 из Задачника "Кванта".

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 18
Дата 1996/1997
вариант
Вариант осенний тур, основной вариант, 8-9 класс
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .