|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что в правильном двенадцатиугольнике A1A2...A12 диагонали A1A5, A2A6, A3A8 и A4A11 пересекаются в одной точке. |
Задача 57985
УсловиеПусть R и r — радиусы описанной и вписанной окружностей треугольника. Докажите, что RРешениеПусть A1, B1 и C1 — середины сторон BC, AC и AB соответственно. При гомотетии с центром в точке пересечения медиан треугольника и коэффициентом гомотетии -1/2 описанная окружность S треугольника ABC переходит в описанную окружность S1 треугольника A1B1C1. Так как окружность S1 пересекает все стороны треугольника ABC, то можно построить треугольник A'B'C' со сторонами, параллельными сторонам треугольника ABC, для которого S1 будет вписанной окружностью (рис.). Пусть r и r' — радиусы вписанных окружностей треугольников ABC и A'B'C'; R и R1 — радиусы окружностей S и S1. Ясно, что rИсточники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|