ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Играют двое. У первого 1000 чётных карточек (2, 4, ..., 2000), у второго – 1001 нечётная (1, 3, ... , 2001). Ходят по очереди, начинает первый. Ход состоит в следующем: игрок, чья очередь ходить, выкладывает одну из своих карточек, а другой, посмотрев на неё, выкладывает одну из своих карточек; тот, у кого число на карточке больше, записывает себе одно очко, а обе выложенные карточки выбрасываются. Всего получается 1000 ходов (одна карточка второго не используется). Какое наибольшее число очков может гарантировать себе каждый из игроков (как бы ни играл его соперник)?

   Решение

Задача 116375
Темы:    [ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Свойства биссектрис, конкуррентность ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9
В корзину
Прислать комментарий

Условие

На наибольшей стороне AB треугольника ABC взяли такие точки P и Q, что  AQ = AC,  BP = BC.
Докажите, что центр описанной окружности треугольника PQC совпадает с центром вписанной окружности треугольника ABC.


Решение

Треугольник BPC – равнобедренный, поэтому биссектриса угла B совпадает с серединным перпендикуляром к стороне CP. Аналогично биссектриса угла A совпадает с серединным перпендикуляром к отрезку CQ. Но центр вписанной окружности треугольника ABC лежит на пересечении упомянутых биссектрис, а центр описанной окружности треугольника PQC – на пересечении упомянутых серединных перпендикуляров.

Замечания

Баллы: Турнир городов – 3, Регата – 6.

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2011/2012
Номер 33
вариант
Вариант осенний тур, базовый вариант, 8-9 класс
Задача
Номер 1
олимпиада
Название Московская математическая регата
год
Год 2017/18
класс
Класс 9
задача
Номер 9.1.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .