ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 102416
Темы:    [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В окружность $ \beta$ с центром в точке O вписан четырёхугольник KLMN, диагонали которого перпендикулярны. Площадь круга, ограниченного окружностью $ \beta$ равна 1110. Найдите длину отрезка MN и сравните с числом 10, если известно, что угол MON в пять раз больше угла KOL.


Ответ

$ \sqrt{\frac{1110(2 - \sqrt{3})}{\pi}}$ < 10.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3838

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .