Условие
Пусть M – точка пересечения диагоналей выпуклого четырёхугольника ABCD, в котором стороны AB, AD и BC равны между собой.
Найдите угол CMD, если известно, что DM = MC, а ∠CAB ≠ ∠DBA.
Решение
Пусть ∠ABD = ∠ADB = α, ∠BAC = ∠ACB = β. По теореме о внешнем угле треугольника ∠BMC = α + β.
Через точку A проведём прямую, параллельную стороне CD. Пусть эта прямая пересекается с прямой DB в точке K. Треугольник AMK равнобедренный, так как он подобен равнобедренному треугольнику CMD. Значит, ∠DK = DM + MK = CM + MA = CA, то есть трапеция AKCD – равнобедренная. Поэтому CK = AD = BC, то есть треугольник BCK также равнобедренный (по условию точка K не совпадает с точкой B). Кроме того,
∠KCM = ∠ADM = α. Рассмотрим два случая.
1) Точка K лежит на диагонали DB. Тогда ∠KBC = ∠BKC = ∠KMC + ∠KCM = 2α + β. Отсюда
180° = ∠BMC + ∠MBC + ∠MCB = (α + β) + (2α + β) + β = 3α + 3β.
2) Точка лежит на продолжении DB за точку B. Тогда ∠BKC = ∠KBC = ∠BMC + ∠BCM = α + 2β. Отсюда
180° = ∠KMC + ∠MK + ∠KCM = (α + β) + (α + 2β) + α = 3α + 3β.
Итак, в любом случае α + β = 60°. Следовательно, ∠CMD = 180° – ∠KMC = 180° – (α + β) = 120°.
Ответ
120°.
Источники и прецеденты использования
|
web-сайт |
Название |
Система задач по геометрии Р.К.Гордина |
URL |
http://zadachi.mccme.ru |
задача |
Номер |
3864 |