ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 102695
Темы:    [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

В квадрате PQRS точка B лежит на стороне RS, а точка A — на стороне SP. Отрезки QB и RA пересекаются в точке T, причём косинус угла BTR равен -0, 2. Найдите сторону квадрата, если известно, что RA = 10, а QB = a.


Решение


Ответ

$ {\frac{2a}{\sqrt{100+a^{2}-8a\sqrt{6}}}}$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4134

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .