ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Ювелиру заказали золотое кольцо шириной h, имеющее форму тела, ограниченного поверхностью шара с центром О и поверхностью цилиндра радиусом r, ось которого проходит через точку О. Мастер сделал такое колечко, но выбрал r слишком маленьким. Сколько золота ему придётся добавить, если r нужно увеличить в k раз, а ширину h оставить прежней?

Вниз   Решение


В классе учатся 30 человек: отличники, троечники и двоечники. Отличники на все вопросы отвечают правильно, двоечники всегда ошибаются, а троечники на заданные им вопросы строго по очереди то отвечают верно, то ошибаются. Всем ученикам было задано по три вопроса: "Ты отличник?", "Ты троечник?", "Ты двоечник?". Ответили "Да" на первый вопрос – 19 учащихся, на второй – 12, на третий – 9. Сколько троечников учится в этом классе?

ВверхВниз   Решение


У Буратино и Пьеро был велосипед, на котором они отправились в соседнюю деревню. Ехали по очереди, но всякий раз, когда один ехал, другой шёл пешком, а не бежал. При этом они ухитрились прибыть в деревню почти в 2 раза быстрее, чем если бы оба шли пешком. Как им это удалось?

Вверх   Решение

Задача 103884
Темы:    [ Разрезания на части, обладающие специальными свойствами ]
[ Обыкновенные дроби ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7
В корзину
Прислать комментарий

Условие

Прямоугольник разрезан на несколько прямоугольников, периметр каждого из которых – целое число метров.
Верно ли, что периметр исходного прямоугольника – тоже целое число метров?


Подсказка

⅓ + ⅔ = 1.


Решение

Например, квадрат со стороной ⅔ м можно разрезать средней линией на два прямоугольника, периметры которых равны 2 м.


Ответ

Неверно.

Замечания

Есть и другие примеры.

Источники и прецеденты использования

олимпиада
Название Математический праздник
год
Год 2003
класс
1
Класс 6
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .