Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Существует ли ломаная, пересекающая все рёбра картинки по одному разу?

Вниз   Решение


Треугольник A1B1C1 получен из треугольника ABC поворотом на угол $ \alpha$ ($ \alpha$ < 180o) вокруг центра его описанной окружности. Докажите, что точки пересечения сторон AB и A1B1, BC и B1C1, CA и C1A1 (или их продолжений) являются вершинами треугольника, подобного треугольнику ABC.

Вверх   Решение

Задача 103988
Темы:    [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
Сложность: 4-
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Найдётся ли среди чисел вида 1...1 число, которое делится на 57?


Решение

См. задачу 34968.


Ответ

Найдётся.

Источники и прецеденты использования

Кружок
Название ВМШ 57 школы
класс
Класс 7
год
Место проведения 57 школа
Год 2005/06
занятие
Номер 3
Название Принцип Дирихле
Тема Принцип Дирихле
задача
Номер 3b

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .