Условие
На клетчатой бумаге нарисована фигура (см. рис. 1): в верхнем ряду — одна клеточка, во втором сверху — три клеточки, в следующем ряду — 5 клеточек, и т.д., всего рядов —
n. Докажите, что общее число клеточек есть квадрат некоторого числа.
_
_|_|_
_|_|_|_|_
_|_|_|_|_|_|_
|_|_|_|_|_|_|_|
.....................
_ _ _ _ _ _ _ _
|_|_|_|_| ....... |_|_|_|_|
|
Рис. 1 |
Решение
На рисунке 2 показано, как фигуру, данную в условии задачи, разрезать на две части (квадраты в одной из частей перечёркнуты) и из этих частей сложить квадрат. Количество клеточек в квадрате, нарисованном на клетчатой бумаге, очевидно, равно квадрату количества клеток, расположенных вдоль его стороны.
|
Рис. 2 |
Таким образом, мы не только показали, что количество клеточек равно квадрату некоторого числа (что требовалось в условии задачи), но и нашли это число (
n), то есть показали, что 1 + 3 + 5 + 7 + ... + (2
n – 1) =
n2 (
n > 0).
Источники и прецеденты использования