Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

В правильном 25-угольнике проведены все диагонали. Докажите, что нет девяти диагоналей, проходящих через одну внутреннюю точку 25-угольника.

Вниз   Решение


Андрей Степанович каждый день выпивает столько капель валерьянки, сколько в этом месяце уже было солнечных дней (включая текущий день). Иван Петрович каждый пасмурный день выпивает количество капель валерьянки, равное номеру дня в месяце, а в солнечные дни не пьет. Докажите, что если в апреле ровно половина дней будет пасмурные, а другая половина – солнечные, то Андрей Степанович и Иван Петрович выпьют за месяц поровну валерьянки.

ВверхВниз   Решение


Двое играющих по очереди красят стороны n-угольника. Первый может покрасить сторону, которая граничит с нулём или двумя покрашенными сторонами, второй – сторону, которая граничит с одной покрашенной стороной. Проигрывает тот, кто не может сделать хода. При каких n второй может выиграть, как бы ни играл первый?

ВверхВниз   Решение


На бесконечной ленте выписаны в ряд числа. Первой идёт единица, а каждое следующее число получается из предыдущего прибавлением к нему наименьшей ненулевой цифры его десятичной записи. Сколько знаков в десятичной записи числа, стоящего в этом ряду на 9·10001000-м месте?

ВверхВниз   Решение


Кузнечик умеет прыгать только ровно на 50 см. Он хочет обойти 8 точек, отмеченных на рисунке (сторона клетки равна 10 см). Какое наименьшее количество прыжков ему придётся сделать? (Разрешается посещать и другие точки плоскости, в том числе не узлы сетки. Начинать и заканчивать можно в любых точках.)

ВверхВниз   Решение


Двое играют в следующую игру: первый выписывает в ряд по своему желанию буквы А или Б (слева направо, одну за другой; по одной букве за ход), а второй после каждого хода первого меняет местами любые две из выписанных букв или ничего не меняет (это тоже считается ходом). После того, как оба игрока сделают по 1999 ходов, игра заканчивается. Может ли второй играть так, чтобы при любых действиях первого игрока в результате получился палиндром (то есть слово, которое читается одинаково слева направо и справа налево)?

ВверхВниз   Решение


Может ли среднее арифметическое 35 целых чисел равняться 6,35?

Вверх   Решение

Задача 107698
Темы:    [ Средние величины ]
[ Подсчет двумя способами ]
Сложность: 2
Классы: 6,7,8,9
Из корзины
Прислать комментарий

Условие

Может ли среднее арифметическое 35 целых чисел равняться 6,35?


Решение

  Предположим, что такие числа существуют. Их сумма равна среднему арифметическому этих чисел, умноженному на их количество:  6,35·35 = 222,25.
  Поскольку сумма целых чисел – целое число, получаем противоречие.


Ответ

Не может.

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
номер/год
Год 2000
Название конкурс по математике
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .