ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 107791
Темы:    [ Раскраски ]
[ Призма (прочее) ]
[ Периодичность и непериодичность ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Можно ли рёбра n-угольной призмы раскрасить в три цвета так, чтобы на каждой грани были все три цвета и в каждой вершине сходились рёбра разных цветов, если   а)  n = 1995;   б)  n = 1996.


Решение

См. задачу 98265.


Ответ

а) Можно;  б) нельзя.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 58
Год 1995
вариант
Класс 11
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .