ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 108107
УсловиеВ параллелограмме ABCD точки M и N – середины сторон BC и CD соответственно. Могут ли лучи AM и AN делить угол BAD на три равные части? ПодсказкаДокажите, что лучи AM и AN делят диагональ BD на три равные части. Решение Предположим, что это возможно. Пусть ∠BAM = ∠MAN = ∠DAN, лучи AM и AN пересекают диагональ BD в точках K и L соответственно, а O – центр параллелограмма. Поскольку K – точка пересечения медиан треугольника ABC, то BK = ⅔ BO = ⅓ BD. ОтветНе могут. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|