ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108486
Темы:    [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь четырехугольника ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

В выпуклом четырёхугольнике PQRS диагонали PR и QS перпендикулярны соответственно сторонам RS и PQ, а сторона PS равна 4. На стороне PS расположена точка K так, что $ \angle$QKP = $ \angle$SKR. Известно, что $ \angle$RPS - $ \angle$PSQ = 45o. Найдите длину ломаной QKR и площадь четырёхугольника PQRS, если отношение QK : RK = $ \sqrt{3}$ : 3.


Ответ

2$ \sqrt{2}$, 2 + $ \sqrt{3}$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3971

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .