ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108488
Темы:    [ Прямая Эйлера и окружность девяти точек ]
[ Теорема синусов ]
[ Вспомогательная окружность ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

В остроугольном треугольнике KLN высоты пересекаются в точке H, а медианы — в точке O. Биссектриса угла K пересекает отрезок OH в такой точке M, что OM : MH = 3 : 1. Найдите площадь треугольника KLN, если LN = 4, а разность углов L и N равна 30o.


Ответ

$ {\frac{4(5\sqrt{3}+1)}{3\sqrt{11}}}$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3973

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .