ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108514
Темы:    [ Углы между биссектрисами ]
[ Теорема косинусов ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

В треугольнике ABC угол при вершине B равен $ {\frac{\pi}{2}}$, а отрезки, соединяющие центр вписанной окружности с вершинами A и C, равны 3 и $ \sqrt{2}$ соответственно. Найдите радиус окружности, вписанной в треугольник ABC.


Ответ

$ {\frac{3}{\sqrt{17}}}$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3999

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .