ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108547
Темы:    [ Метод координат на плоскости ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Даны точки A(5;5), B(8; - 3) и C(- 4;1). Найдите координаты точки пересечения медиан треугольника ABC.


Решение

Первый способ.

Известно, что медианы треугольника делятся точкой пересечения в отношении 2:1, считая от вершины. Поэтому, если D(x1;y1) — середина отрезка BC, то AM : MD = 2 : 1. Известно также, что координаты середины отрезка есть средние арифметические соответствующих координат его концов. Значит,

x1 = $\displaystyle {\frac{8-4}{2}}$ = 2, y1 = $\displaystyle {\frac{-3+1}{2}}$ = - 1.

Поскольку точка M(x0;y0) делит отрезок AD в отношении 2:1, считая от точки A, то по теореме о пропорциональных отрезках проекция точки M на ось OX делит проекцию отрезка AD на эту ось в том же отношении, т.е.

$\displaystyle {\frac{x_{0}-5}{2-x_{0}}}$ = 2.

Отсюда находим, что x0 = 3. Аналогично находим, что y0 = 1.

Второй способ.

Пусть M(x0;y0) — точка пересечения медиан треугольника ABC. Поскольку координаты точки пересечения медиан треугольника есть средние арифметические соответствующих координат вершин треугольника, то

x0 = $\displaystyle {\frac{5+8-4}{3}}$ = 3, y0 = $\displaystyle {\frac{5-3+1}{3}}$ = 1.


Ответ

(3;1).

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4238

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .