ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108591
Темы:    [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Параллелограмм Вариньона ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В выпуклом четырёхугольнике, не являющемся параллелограммом, две противоположные стороны равны.
Докажите, что прямая, проходящая через середины его диагоналей, образует равные углы с этими сторонами.


Решение

  Пусть M и N – середины диагоналей соответственно AC и BD выпуклого четырёхугольника ABCD, в котором  AB = CD.  Если K – середина стороны BC, то KM – средняя линия треугольника ABC, а KN – средняя линия треугольника BCD. Поэтому  KM || AB,  KM = ½ AB,  KN || CD,  KN = ½ CD = ½ AB = KM.
  Значит, треугольник KMN – равнобедренный. Пусть прямая MN пересекает стороны AB и CD соответственно в точках P и Q. Тогда
BPM = ∠KMN = ∠KNM = ∠CQN.  Что и требовалось доказать.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4267

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .