ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 108882
УсловиеВ треугольнике ABC ∠A = 60°. Внутри треугольника нашлась точка O, из которой все стороны видны под углом 120°. На луче CO выбрана такая точка D, что треугольник AOD – равносторонний. Серединный перпендикуляр к отрезку AO пересекает прямую BC в точке Q. Докажите, что прямая OQ делит отрезок BD пополам. Решение Заметим, что ∠BAO = 60° – ∠OAC = ∠OCA, ∠ABO = 60° – ∠BAO = ∠OAC. Поэтому треугольники AOB и COA подобны по двум углам. Следовательно, Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|