ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108915
Темы:    [ Площадь круга, сектора и сегмента ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

На гипотенузе и катетах прямоугольного треугольника построены полуокружности, расположенные так, как показано на рисунке. Докажите, что сумма площадей образовавшихся "луночек" равна площади данного треугольника.

Решение

Пусть 2a и 2b – длины катетов, 2c – длина гипотенузы. Тогда по теореме Пифагора

4a2+4b2 = 4c2 a2+b2-c2 = 0.

Сумма площадей "луночек" равна
(+ + SΔ ABC) - = (a2+b2-c2) + SΔ ABC = 0+SΔ ABC= SΔ ABC.

Что и требовалось доказать.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6266

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .