ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 109041
Темы:    [ Исследование квадратного трехчлена ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

x1 – вещественный корень уравнения  x² + ax + b = 0,  x2 – вещественный корень уравнения  x² – ax – b = 0.
Доказать, что уравнение  x² + 2ax + 2b = 0  имеет вещественный корень, заключённый между x1 и x2.  (a и b – вещественные числа).


Решение

См. задачу 77989.

Источники и прецеденты использования

олимпиада
Название Белорусские республиканские математические олимпиады
олимпиада
Номер 17
Название 17-я Белорусская республиканская математическая олимпиада
Год 1967
Задача
Название Задача 9.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .