Страница: 1
2 3 4 >> [Всего задач: 20]
(Продолжение задачи 32796)
Стоя в углу, Клайв разобрал свои наручные часы, чтобы посмотреть, как они устроены. Собирая их обратно, он произвольно надел часовую и минутную стрелки. Сможет ли он так повернуть циферблат, чтобы хоть раз в сутки часы показывали правильное время (часы при этом еще не заведены)?
|
|
Сложность: 3+ Классы: 9,10,11
|
Пусть x1, x2, ..., xn – некоторые числа, принадлежащие отрезку [0, 1].
Докажите, что на этом отрезке найдется такое число x, что
1/n (|x – x1| + |x – x2| + ... + |x – xn|) = ½.
|
|
Сложность: 5 Классы: 9,10,11
|
Дана выпуклая фигура и точка A внутри нее.
Докажите, что найдется хорда (т.е. отрезок,
соединяющий две граничные точки выпуклой фигуры), проходящая через
точку A и делящаяся точкой A пополам.
|
|
Сложность: 3+ Классы: 9,10,11
|
На доске написано: x³ + ...x² + ...x + ... = 0. Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?
|
|
Сложность: 3+ Классы: 10,11
|
Коэффициенты квадратного уравнения ax² + bx + c = 0 удовлетворяют условию 2a + 3b + 6c = 0.
Докажите, что это уравнение имеет корень на интервале (0, 1).
Страница: 1
2 3 4 >> [Всего задач: 20]