ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 109272
Условие
Три сферы радиуса 1 попарно касаются друг друга и некоторой
плоскости. Основание конуса расположено в этой плоскости. Все три
сферы касаются боковой поверхности конуса внешним образом. Найдите
радиус основания конуса, если высота конуса равна 2.
Решение
Пусть O'1 , O'2 , O'3 – ортогональные проекции центров
O1 , O2 , O3 данных сфер на плоскость основания конуса,
A – вершина конуса, O – центр основания конуса, r – его
радиус основания конуса (рис.1). Точка O – центр окружности, описанной около
равностороннего треугольника O'1O'2O'3 со стороной 2,
поэтому OO'1 = Следовательно, Ответ
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке