ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 109407
Условие
Найдите объём правильной шестиугольной пирамиды с высотой
h и радиусом r вписанной сферы.
Решение
Пусть O – центр сферы радиуса r , вписанной в правильную
шестиугольную пирамиду PABCDEF с вершиной P (рис.1), K – середина BC .
Точка O лежит на прямой PM , где M – центр основания ABCDEF .
По условию задачи PM = h .
Обозначим AB = BC = CD = DE = EF = AF = a , Поэтому Из прямоугольного треугольника PMK находим, что откуда a = Ответ
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке