ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 109592
Темы:    [ Уравнения высших степеней (прочее) ]
[ Симметрия и инволютивные преобразования ]
[ Многочлены (прочее) ]
Сложность: 3+
Классы: 7,8,9,10
В корзину
Прислать комментарий

Условие

Известно, что уравнение  ax5 + bx4 + c = 0  имеет три различных корня. Докажите, что уравнение  cx5 + bx + a = 0  также имеет три различных корня.


Решение

Число  x = 0  не может быть корнем уравнения  ax5 + bx4 + c = 0,  так как иначе  c = 0,  и уравнение имеет не более двух различных корней, что противоречит условию. Разделив обе части этого уравнения на x5, получаем, что  a + b/x + c/x5 = 0.  Следовательно, если x1, x2 и x3 – различные корни уравнения  ax5 + bx4 + c = 0,  то 1/x1, 1/x2 и 1/x3 – различные корни уравнения  cx5 + bx + a = 0.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1994
Этап
Вариант 4
класс
Класс 9
задача
Номер 94.4.9.5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .