ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 109642
Темы:    [ Внутренность и внешность. Лемма Жордана ]
[ Произвольные многоугольники ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Автор: Мусин О.

Даны многоугольник, прямая l и точка P на прямой l в общем положении (то есть все прямые, содержащие стороны многоугольника, пересекают l в различных точках, отличных от P). Отметим те вершины многоугольника, для каждой из которых прямые, на которых лежат выходящие из неё стороны многоугольника, пересекают l по разные стороны от точки P. Докажите, что точка P лежит внутри многоугольника тогда и только тогда, когда по каждую сторону от l отмечено нечётное число вершин.


Решение

Для каждой из вершин многоугольника, лежащих по одну сторону от l, отметим отрезок, высекаемый на l прямыми, на которых лежат выходящие из неё стороны. Надо доказать, что точка P лежит внутри многоугольника тогда и только тогда, когда она принадлежит нечётному числу отмеченных отрезков. Но каждая из точек пересечения l со сторонами многоугольника будет концом ровно одного из отмеченных отрезков, а каждая из точек пересечения l с продолжением стороны многоугольника (лежащей по нужную сторону от l) – концом ровно двух отмеченных отрезков. Следовательно, при движении точки P по прямой l чётность количества содержащих её отмеченных отрезков изменяется при каждом пересечении границы многоугольника. Осталось заметить, что, когда P расположена так, что все точки пересечения прямых с l находятся по одну сторону от неё, количество покрывающих её отрезков равно нулю, и она лежит вне многоугольника. Отсюда и следует утверждение задачи.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1997
Этап
Вариант 5
Класс
Класс 11
задача
Номер 97.5.11.6

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .