ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 109642

Темы:   [ Внутренность и внешность. Лемма Жордана ]
[ Произвольные многоугольники ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10,11

Автор: Мусин О.

Даны многоугольник, прямая l и точка P на прямой l в общем положении (то есть все прямые, содержащие стороны многоугольника, пересекают l в различных точках, отличных от P). Отметим те вершины многоугольника, для каждой из которых прямые, на которых лежат выходящие из неё стороны многоугольника, пересекают l по разные стороны от точки P. Докажите, что точка P лежит внутри многоугольника тогда и только тогда, когда по каждую сторону от l отмечено нечётное число вершин.

Прислать комментарий     Решение

Задача 98596

Темы:   [ Теория алгоритмов (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Внутренность и внешность. Лемма Жордана ]
Сложность: 4
Классы: 8,9,10

а) Электрическая схема имеет вид решетки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от каждого узла к любому другому. За какое наименьшее число измерений всегда можно в этом удостовериться?

б) Тот же вопрос для схемы, которая имеет вид решётки 5×5 (всего 36 узлов).

Прислать комментарий     Решение

Задача 98603

Темы:   [ Теория алгоритмов (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Внутренность и внешность. Лемма Жордана ]
Сложность: 4+
Классы: 9,10,11

а) Электрическая схема имеет вид решётки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от любого узла к любому. За какое наименьшее число измерений всегда можно в этом удостовериться?

б) Тот же вопрос для схемы, которая имеет вид решётки 7×7 (всего 64 узла).

Прислать комментарий     Решение

Задача 66239

Темы:   [ Пересекающиеся окружности ]
[ Комбинаторная геометрия (прочее) ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
[ Внутренность и внешность. Лемма Жордана ]
Сложность: 4
Классы: 9,10,11

Сколько (максимум) кругов можно расположить на плоскости так, чтобы каждые два из них пересекались, а никакие три – нет?

Прислать комментарий     Решение

Задача 73755

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Геометрия на клетчатой бумаге ]
[ Наибольшая или наименьшая длина ]
[ Шахматная раскраска ]
[ Внутренность и внешность. Лемма Жордана ]
Сложность: 4
Классы: 9,10,11

Король обошёл шахматную доску, побывав на каждом поле ровно один раз и вернувшись последним ходом на исходное поле. (Король ходит по обычным правилам: за один ход он может перейти по горизонтали, вертикали или диагонали на любое соседнее поле.) Когда нарисовали его путь, последовательно соединив центры полей, которые он проходил, получилась замкнутая ломаная без самопересечений. Какую наименьшую и какую наибольшую длину может она иметь? (Сторона клетки равна единице.)

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .