ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Антропов А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 66618

Тема:   [ Лингвистика ]
Сложность: 2
Классы: 5,6,7

Впишите в следующее предложение какое-нибудь числительное (не цифрами, а словом или словами), чтобы предложение было верным.

В этом предложении ______________________ гласных букв.

Прислать комментарий     Решение

Задача 67327

Тема:   [ Ребусы ]
Сложность: 2
Классы: 6,7

В ребусе $\text{ТУР}+\text{ТУР}+\text{ТУР}+...+\text{ТУР}=\text{ТУРЛОМ}$ одинаковые буквы заменяют одинаковые цифры, разные буквы заменяют разные цифры. Часть одинаковых слагаемых мы заменили многоточием. Сколько всего может быть ТУРов, чтобы ребус имел решение? Найдите наименьшее и наибольшее количества.
Прислать комментарий     Решение


Задача 66619

Темы:   [ Задачи на движение ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 5,6,7

Илья совершенно не любит задачи на скорость и не помнит ни одной формулы. Когда его спросили, какое расстояние проедет поезд, он попробовал и перемножить данные скорость и время, и сложить их, и даже поделить скорость на время. «У меня всегда получается одно и то же число! Наверное, это и есть правильный ответ!» — воскликнул Илья. Докажите, что выполнять арифметические действия Илья тоже не умеет.
Прислать комментарий     Решение


Задача 67270

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 3,4,5,6,7

Саша написал на доске несколько двузначных чисел в порядке возрастания, а после этого заменил одинаковые цифры на одинаковые буквы, а разные цифры – на разные буквы. У него получилось (в том же порядке)

АС, АР, ЯР, ЯК, ОК, ОМ, УМ, УЖ, ИЖ, ИА

Восстановите цифры.
Прислать комментарий     Решение

Задача 65927

Темы:   [ Турниры и турнирные таблицы ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 8,9

В спортивном клубе проходит первенство по теннису. Проигравший партию выбывает из борьбы (ничьих в теннисе не бывает). Пару для следующей партии определяет жребий. Первую партию судил приглашённый судья, а каждую следующую партию должен судить член клуба, не участвующий в ней и не судивший ранее. Могло ли так оказаться, что очередную партию судить некому?

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .