|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Диагональ правильного 2006-угольника P называется хорошей, если её концы делят границу P на две части, каждая из которых содержит нечётное число сторон. Стороны P также называются хорошими. Пусть P разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри P. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение? |
Задача 109666
УсловиеВ тетраэдр ABCD , длины всех ребер которого не более 100, можно поместить две непересекающиеся сферы диаметра 1. Докажите, что в него можно поместить одну сферу диаметра 1,01.РешениеРассмотрим множества M центров сфер диаметра 1, лежащих в данном тетраэдре T . Так как M – множество точек, удаленных от всех граней T не менее, чем на 1/2 , то M – это тетраэдр с гранями, параллельными граням тетраэдра T , т.е. M и T гомотетичны. Центры вписанных сфер обоих тетраэдров совпадают, поэтому коэффициент k гомотетии равенИсточники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|