ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Диагональ правильного 2006-угольника P называется хорошей, если её концы делят границу P на две части, каждая из которых содержит нечётное число сторон. Стороны P также называются хорошими. Пусть P разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри P. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение?

   Решение

Задача 109666
Темы:    [ Гомотетия помогает решить задачу ]
[ Сфера, вписанная в тетраэдр ]
[ Метод ГМТ в пространстве ]
[ Длины и периметры (геометрические неравенства) ]
Сложность: 5+
Классы: 10,11
В корзину
Прислать комментарий

Условие

Автор: Карасев Р.

В тетраэдр ABCD , длины всех ребер которого не более 100, можно поместить две непересекающиеся сферы диаметра 1. Докажите, что в него можно поместить одну сферу диаметра 1,01.

Решение

Рассмотрим множества M центров сфер диаметра 1, лежащих в данном тетраэдре T . Так как M – множество точек, удаленных от всех граней T не менее, чем на 1/2 , то M – это тетраэдр с гранями, параллельными граням тетраэдра T , т.е. M и T гомотетичны. Центры вписанных сфер обоих тетраэдров совпадают, поэтому коэффициент k гомотетии равен , где r – радиус сферы, вписанной в T . С другой стороны, две сферы единичного диаметра не пересекаются, поэтому расстояние между их центрами не меньше 1, значит, длина одного из ребер тетраэдра M , содержащего эти центры, не меньше 1. Отсюда следует, что k (длины ребер тетраэдра T не больше 100), т.е. 1- , откуда 2r>1,01 . Итак, диаметр сферы, вписанной в T , больше 1,01, т.е. в качестве искомой можно выбрать сферу, вписанную в T .

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1998
Этап
Вариант 5
Класс
Класс 11
задача
Номер 98.5.11.7

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .