ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 110771
УсловиеДиагональ правильного 2006-угольника P называется хорошей, если её концы делят границу P на две части, каждая из которых содержит нечётное число сторон. Стороны P также называются хорошими. Пусть P разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри P. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение? РешениеНазовём равнобедренный треугольник хорошим, если у него две хороших стороны. Рассмотрим разбиение, удовлетворяющее условиям задачи. С помощью индукции легко убедиться в справедливости следующего утверждения. Лемма. Пусть AB – одна из диагоналей разбиения и L – более короткая часть границы P, на которую её делят точки A, B. Если L состоит из n отрезков, то количество хороших равнобедренных треугольников разбиения с вершинами на L не превосходит n/2. Рассмотрим длиннейшую диагональ разбиения. Пусть Lxy – более короткий участок границы, с концами X и Y. Пусть XYZ – треугольник разбиения, причём Z не принадлежит Lxy. Заметим, что треугольник XYZ – остроугольный или прямоугольный (иначе XZ либо YZ будет длиннее XY). Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|