ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 110000
Темы:    [ Неравенства с модулями ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 7,8,9,10
В корзину
Прислать комментарий

Условие

Существуют ли действительные числа a , b и c такие, что при всех действительных x и y выполняется неравенство

|x+a|+|x+y+b|+|y+c|>|x|+|x+y|+|y|?


Решение

Предположим, что такие числа a , b и c существуют. Выберем x>0 и y>0 такие, что x+a0 , x+y+b0 , y+c0 . Тогда разность между левой и правой частями равна a+b+c . А если взять x<0 и y<0 такие, что x+a<0 , x+y+b<0 , y+c<0 , то эта разность будет равна -a-b-c . Таким образом, с одной стороны, a+b+c>0 , с другой a+b+c<0 . Противоречие.

Ответ

Нет.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1999
Этап
Вариант 4
Класс
Класс 11
задача
Номер 99.4.11.5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .