ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 >> [Всего задач: 18]      



Задача 86496

Тема:   [ Неравенства с модулями ]
Сложность: 2
Классы: 8,9

Решите неравенство:
|x + 2000| < |x - 2001|.
Прислать комментарий     Решение


Задача 77946

Тема:   [ Неравенства с модулями ]
Сложность: 3-
Классы: 10,11

Докажите, что

$\displaystyle \left\vert\vphantom{ \frac{x-y}{1-xy}}\right.$$\displaystyle {\frac{x-y}{1-xy}}$$\displaystyle \left.\vphantom{ \frac{x-y}{1-xy}}\right\vert$ < 1,

если | x| < 1 и | y| < 1.
Прислать комментарий     Решение

Задача 79605

Темы:   [ Неравенства с модулями ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3-
Классы: 7,8,9

Докажите, что если  a + b + c + d > 0,  a > cb > d,  то  |a + b| > |c + d|.

Прислать комментарий     Решение

Задача 65306

Темы:   [ Неравенства с модулями ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4-
Классы: 9,10,11

На улице n домов. Каждый день почтальон идёт на почту, берёт там письма для жителей одного дома и разносит их. Затем он возвращается на почту, берёт письма для жителей другого дома и снова их разносит. И так он обходит все дома. В каком месте нужно построить почту, чтобы почтальону пришлось проходить наименьшее расстояние? Улицу можно считать отрезком прямой.
  а) Решите задачу для  n = 5.
  б) Решите задачу для  n = 6.
  в) Решите задачу для произвольного n.

Прислать комментарий     Решение

Задача 79494

Темы:   [ Неравенства с модулями ]
[ Разложение на множители ]
Сложность: 4-
Классы: 8,9,10

Докажите, что система неравенств
    |x| > |y – z + t|,
    |y| > |x – z + t|,
    |z| > |x – y + t|,
    |t| > |x – y + z|
не имеет решений.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .