ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Дидин М.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 3 4 5 6 >> [Всего задач: 28]      



Задача 66581

Темы:   [ Деление с остатком. Арифметика остатков ]
[ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 8,9,10

Автор: Дидин М.

В комнате находится несколько детей и куча из 2021 конфеты. Каждый из них по очереди подходит к куче, делит количество конфет в ней на количество детей в комнате (включая себя), округляет (если получилось нецелое число), забирает полученное число конфет и покидает комнату. При этом мальчики округляют вверх, а девочки – вниз. Докажите, что суммарное количество конфет у мальчиков, когда все выйдут из комнаты, не зависит от порядка детей в очереди.
Прислать комментарий     Решение


Задача 66848

Темы:   [ Теория алгоритмов (прочее) ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Дидин М.

По кругу стоят буквы A и B, всего 41 буква. Можно заменять ABA на B и наоборот, а также BAB на A и наоборот.
Верно ли, что из любого начального расположения можно получить такими операциями круг, на котором стоит ровно одна буква?

Прислать комментарий     Решение

Задача 67041

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 3+
Классы: 8,9

Автор: Дидин М.

Выпуклый $n$-угольник  ($n$ > 4)  обладает таким свойством: если диагональ отсекает от него треугольник, то этот треугольник равнобедренный. Докажите, что среди любых четырёх сторон этого n-угольника есть хотя бы две равных.

Прислать комментарий     Решение

Задача 66653

Темы:   [ Биссектриса угла ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 8,9,10

Автор: Дидин М.

Пусть $D$ – основание внешней биссектрисы угла $B$ треугольника $ABC$, в котором $AB > BC$. Сторона $AC$ касается вписанной и вневписанной окружностей в точках $K$ и $K_1$ соответственно, точки $I$ и $I_1$ – центры этих окружностей. Прямая $BK$ пересекает $DI_1$ в точке $X$, а $BK_1$ пересекает $DI$ в точке $Y$. Докажите, что $XY \perp AC$.
Прислать комментарий     Решение


Задача 66900

Темы:   [ Теория алгоритмов (прочее) ]
[ Деление с остатком ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Дидин М.

В комнате находится несколько детей и куча из 1000 конфет. Дети по очереди подходят к куче. Каждый подошедший делит количество конфет в куче на количество детей в комнате, округляет (если получилось нецелое), забирает полученное число конфет и выходит из комнаты. При этом мальчики округляют вверх, а девочки – вниз. Докажите, что суммарное количество конфет у мальчиков, когда все выйдут из комнаты, не зависит от порядка детей в очереди.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .