ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 110013
Темы:    [ Геометрия на клетчатой бумаге ]
[ Раскраски ]
[ Доказательство от противного ]
Сложность: 4
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Все клетки клетчатой плоскости окрашены в 5 цветов так, что в любой фигуре вида



все цвета различны. Докажите, что и в любой фигуре вида


все цвета различны.

Решение



Предположим, что в некоторой фигуре 1×5 отсутствует некоторый цвет, например, синий (на рисунке эта фигура закрашена). Тогда в каждой паре клеток, обозначенных одинаковыми буквами, присутствует синий цвет (в противном случае его не будет в одной из крестообразных фигур, включающих эти пары клеток). Но тогда одна из двух крестообразных фигур, включающих клетки, обозначенные буквами a и c , содержит 2 клетки синего цвета. Противоречие.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1999
Этап
Вариант 4
Класс
Класс 9
задача
Номер 99.4.9.5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .