ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 110020
Темы:    [ Разбиения на пары и группы; биекции ]
[ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Докажите, что числа от 1 до 15 нельзя разбить на две группы: A из двух чисел и B из 13 чисел так, чтобы сумма чисел в группе B была равна произведению чисел в группе A.


Решение

Пусть такое разбиение возможно и в A вошли числа x и y,  x < y.  Тогда сумма чисел в B равна  1 + 2 + ... + 15 – x – y = 120 – x – y,  то есть  xy = 120 – x – y.  Переписав это равенство в виде  (x + 1)(y + 1) = 121,  получаем, что  x + 1 = 1,  y + 1 = 121,  что невозможно.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1999
Этап
Вариант 4
Класс
Класс 8
задача
Номер 99.4.8.5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .