ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Команда из n школьников участвует в игре: на каждого из них надевают шапку одного из k заранее известных цветов, а затем по свистку все школьники одновременно выбирают себе по одному шарфу. Команда получает столько очков, у скольких её участников цвет шапки совпал с цветом шарфа (шарфов и шапок любого цвета имеется достаточное количество; во время игры каждый участник не видит своей шапки, зато видит шапки всех остальных, но не имеет права выдавать до свистка никакую информацию). Какое наибольшее число очков команда, заранее наметив план действий каждого её члена, может гарантированно получить: В ящиках лежат камни. За один ход выбирается число k, затем камни в ящиках делятся на группы по k штук и остаток менее, чем из k штук. Оставляют по одному камню из каждой группы и весь остаток. Можно ли за пять ходов добиться, чтобы в ящиках осталось ровно по одному камню, если в каждом из них Докажите, что в любом множестве, состоящем из 117 попарно различных трёхзначных чисел, можно выбрать четыре попарно непересекающихся подмножества, суммы чисел в которых равны. |
Задача 110061
УсловиеДокажите, что в любом множестве, состоящем из 117 попарно различных трёхзначных чисел, можно выбрать четыре попарно непересекающихся подмножества, суммы чисел в которых равны. Решение Покажем, что среди произвольных 106 трехзначных чисел существуют даже четыре непересекающиеся пары с равными суммами. ЗамечанияВыбирая не только пары, но также тройки и четвёрки, можно показать, что четыре непересекающиеся подмножества с равными суммами можно выбрать среди любых 97 трёхзначных чисел. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке