Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Команда из n школьников участвует в игре: на каждого из них надевают шапку одного из k заранее известных цветов, а затем по свистку все школьники одновременно выбирают себе по одному шарфу. Команда получает столько очков, у скольких её участников цвет шапки совпал с цветом шарфа (шарфов и шапок любого цвета имеется достаточное количество; во время игры каждый участник не видит своей шапки, зато видит шапки всех остальных, но не имеет права выдавать до свистка никакую информацию). Какое наибольшее число очков команда, заранее наметив план действий каждого её члена, может гарантированно получить:
  а) при  n = k = 2;
  б) при произвольных фиксированных n и k?

Вниз   Решение


В ящиках лежат камни. За один ход выбирается число k, затем камни в ящиках делятся на группы по k штук и остаток менее, чем из k штук. Оставляют по одному камню из каждой группы и весь остаток. Можно ли за пять ходов добиться, чтобы в ящиках осталось ровно по одному камню, если в каждом из них
  а) не более 460 камней;
  б) не более 461 камня?

ВверхВниз   Решение


Докажите, что в любом множестве, состоящем из 117 попарно различных трёхзначных чисел, можно выбрать четыре попарно непересекающихся подмножества, суммы чисел в которых равны.

Вверх   Решение

Задача 110061
Темы:    [ Принцип Дирихле (прочее) ]
[ Сочетания и размещения ]
Сложность: 4
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

Докажите, что в любом множестве, состоящем из 117 попарно различных трёхзначных чисел, можно выбрать четыре попарно непересекающихся подмножества, суммы чисел в которых равны.


Решение

  Покажем, что среди произвольных 106 трехзначных чисел существуют даже четыре непересекающиеся пары с равными суммами.
  Из 106 чисел можно образовать  106·105 : 2 = 5460  пар, сумма чисел в каждой паре лежит между 200 и 2000. Если пар с каждой суммой не более трёх, то всего пар не более  1800·3 = 5400,  что не так.
  Следовательно, у каких-то четырёх пар суммы совпадают. Пары, для которых совпадают суммы, не могут пересекаться: если  x + y = x + z,  то  y = z,  и пары совпадают.

Замечания

Выбирая не только пары, но также тройки и четвёрки, можно показать, что четыре непересекающиеся подмножества с равными суммами можно выбрать среди любых 97 трёхзначных чисел.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2001
Этап
Вариант 4
Класс
Класс 11
задача
Номер 01.4.11.8

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .