ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 110083
Темы:    [ Таблицы и турниры (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Раскраски ]
Сложность: 3+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Можно ли клетки доски 5×5 покрасить в 4 цвета так, чтобы клетки, стоящие на пересечении любых двух строк и любых двух столбцов, были покрашены не менее чем в три цвета?


Решение

  Предположим, что существует раскраска таблицы 5×5, удовлетворяющая условию.
  В каждом столбце найдётся цвет, в который покрашены по крайней мере две клетки этого столбца. Назовём такой цвет преобладающим для данного столбца (возможно, у какого-то столбца будет два преобладающих цвета).
  Аналогично какой-то цвет (назовём его 1) будет преобладающим для двух столбцов. Поскольку от перестановки строк и столбцов ничего не зависит, будем считать, что это столбцы a и b. Также можно считать, что в первом столбце цветом 1 покрашены клетки a4 и a5. Тогда клетки b4 и b5 должны быть покрашены какими-то двумя различными цветами, отличными от цвета 1. Пусть они покрашены цветами 2 и 3, а поскольку цвет 1 – преобладающий для столбца b, можно считать, что клетки b2 и b3 покрашены цветом 1.

  Рассмотрим клетку a3. Выбрав 3-ю и 5-ю строки и столбцы a и b, мы получим, что клетка a3 не может быть покрашенной цветами 1 и 2. Аналогично она не может быть покрашенной цветами 1 и 2 и, следовательно, покрашена цветом 4. Из аналогичных рассуждений получаем, что и клетка a2 покрашена цветом 4.
  Значит, квадрат, состоящий из клеток a3, a2, b3 и b2, покрашен в два цвета. Противоречие.


Ответ

Нельзя.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2001
Этап
Вариант 4
Класс
Класс 8
задача
Номер 01.4.8.7

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .