Страница: 1
2 3 4 5 6 7 >> [Всего задач: 42]
Найдите все такие числа a, что для любого натурального n число an(n + 2)(n + 4) будет целым.
Найдите все такие числа a, что для любого натурального n
число an(n + 2)(n + 3)(n + 4) будет целым.
|
|
Сложность: 3 Классы: 8,9,10
|
Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося?
|
|
Сложность: 3+ Классы: 9,10,11
|
Назовём натуральное число хорошим, если среди его делителей есть ровно два простых числа.
Могут ли 18 подряд идущих натуральных чисел быть хорошими?
|
|
Сложность: 3+ Классы: 8,9,10
|
За круглым столом сидят 2015 человек, каждый из них – либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Им раздали по одной карточке, на каждой карточке написано по числу; при этом все числа на карточках различны. Посмотрев на карточки соседей, каждый из сидящих за столом сказал:
"Мое число больше, чем у каждого из двух моих соседей". После этого k из сидящих сказали: "Мое число меньше, чем у каждого из двух моих соседей". При каком наибольшем k это могло случиться?
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 42]