ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 110204
УсловиеВ тетраэдре ABCD из вершины A опустили перпендикуляры AB' , AC' , AD' на плоскости, делящие двугранные углы при ребрах CD , BD , BC пополам. Докажите, что плоскость (B'C'D') параллельна плоскости (BCD) .РешениеПродолжим отрезок AB' до пересечения с плоскостью BCD в точке B'' . Так как плоскости (BCD) и (ACD) симетричны относительно биссекторной плоскости, то AB'=B'B'' . Аналогично по точкам C' и D' строим точки C'' и D'' . При гомотетии с центром A и коэффициентом плоскость (B''C''D'') переходит в плоскость (B'C'D') , поэтому (B'C'D')|| (B''C''D'')=(BCD) , что и требовалось доказать. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|