ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 110204
Условие
В тетраэдре ABCD из вершины A опустили перпендикуляры AB' ,
AC' , AD' на плоскости, делящие двугранные углы при ребрах CD , BD , BC
пополам. Докажите, что плоскость (B'C'D') параллельна плоскости (BCD) .
Решение
Продолжим отрезок AB' до пересечения с плоскостью BCD в точке B'' . Так как плоскости (BCD) и (ACD) симетричны относительно биссекторной плоскости, то AB'=B'B'' . Аналогично по точкам C' и D' строим точки C'' и D'' . При гомотетии с центром A и коэффициентом Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке