ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 110787
Темы:    [ Пересекающиеся окружности ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Две равные окружности пересекаются в точках A и B . P – отличная от A и B точка одной из окружностей, X , Y – вторые точки пересечения прямых PA , PB с другой окружностью. Докажите, что прямая, проходящая через P и перпендикулярная AB , делит одну из дуг XY пополам.

Решение

Рассмотрим случай, когда P лежит внутри второй окружности (рис.8.4). Пусть Q точка пересечения прямой, проходящей через P и перпендикулярной AB , лежащая вне первой окружности. Тогда QPX= (+)/2 , QPY=(+)/2 . Но (-)/2= PBA- PAB= QPX- QPY , следовательно дуги QX и QY равны. Другие случаи рассматриваются аналогично.


Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2006
Класс
Класс 8
задача
Номер 84

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .